If it's not what You are looking for type in the equation solver your own equation and let us solve it.
32=25x^2
We move all terms to the left:
32-(25x^2)=0
a = -25; b = 0; c = +32;
Δ = b2-4ac
Δ = 02-4·(-25)·32
Δ = 3200
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3200}=\sqrt{1600*2}=\sqrt{1600}*\sqrt{2}=40\sqrt{2}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-40\sqrt{2}}{2*-25}=\frac{0-40\sqrt{2}}{-50} =-\frac{40\sqrt{2}}{-50} =-\frac{4\sqrt{2}}{-5} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+40\sqrt{2}}{2*-25}=\frac{0+40\sqrt{2}}{-50} =\frac{40\sqrt{2}}{-50} =\frac{4\sqrt{2}}{-5} $
| 26.9-4v=1.3 | | 4+3x=-9-12÷x | | 3(m-7)-4=2 | | a/4-{4}-23=-17 | | 7x-65=56 | | 1-9x=メー49 | | 1-9x=メー49 | | 1-9x=メー49 | | y=2(19)+10 | | y=2(19)+10 | | 8m+30=-5m+-9 | | y=8(19)-20 | | 4(8+5x^2)=352 | | 4(8+5x^2)=352 | | 4(8+5x^2)=352 | | 4(8+5x^2)=352 | | 4(8+5x^2)=352 | | 4(8+5x^2)=352 | | y=8(19)-20 | | u/5+6=-25.25 | | y=8(19)-20 | | (-7,4);m=7 | | y=8(19)-20 | | 7x+21=8x+69 | | (-7,4);m=7 | | u/5+6=-25.25 | | u/5+6=-25.25 | | 2s-8+5=-24 | | 2s-8+5=-24 | | 20(0)+4x=180 | | 2/n=n/5n+12 | | -2.1=v/7+20.3 |